Overview
This article answers some of the most common questions about GPS Sync, released for airMAX AC in airOS v8.3 and for airMAX M in v6.1.3. Click on the question that interests you to expand and collapse the answers. This article will be updated as more common questions are brought to our attention. If you feel that a question is missing, please click the feedback button at the bottom of this page and let us know! Find more information in the GPS Sync page.
Frequenty Asked Questions
What devices are supported?TDD fixed framing options are available on all AC products when in AP PTMP AC mode. Support for airMAX M CPEs was added in airOS version 6.1.3. For scenarios where you use M devices as CPEs and AC devices as APs, the AC devices must be on (at least) airOS v8.4, and the M devices must be configured in Station WDS mode.
Currently, 10 Mhz, 20 MHz, and 40 MHz channel widths are supported. While airMAX priority and ATPC are operational in fixed Frame mode, The TDMA Filter setting on the AP is not connected to the fixed frame implementation. The option to synchronize with the GPS clock is only available on products that have the GPS component e.g. Rocket PRISM 2AC, Rocket PRISM 5AC, Rocket PRISM 5AC GEN2, PRISMStation 5AC, and LiteAP GPS.
|
||||||||||||||||||||||||||||||||
What is the minimum firmware required for GPS Sync?
|
||||||||||||||||||||||||||||||||
What frame durations and ratios are supported?Frame durations of 5ms, 8ms, 10ms are supported. It is also allowed to split these in 75 DL/25 UL, 67 DL/33 UL or 50 DL/50 UL ratios.
|
||||||||||||||||||||||||||||||||
Clean channel throughputSee tables below for comparison:
|
||||||||||||||||||||||||||||||||
Why doesn't the UL throughput match the ratio exactly?In a PTMP fixed framing system, some part of the UL allocation is used to allow the connected CPEs to request the AP for time allocation. This part of the UL cannot be used to send data. Additionally, there is some amount of turn around time reserved for the transition between DL and UL, and also between UL and DL. There are already some improvements to the UL throughput, and they will be provided in subsequent releases.
|
||||||||||||||||||||||||||||||||
LatencyThe expected latency is 2x to 3x the TDD framing duration.
|
||||||||||||||||||||||||||||||||
Why are the reported capacity numbers much lower than flexible framing?Since flexible framing dynamically allocates the time used by DL and UL, capacity is reported assuming that specific direction uses 95% of the time to send data. Additionally, the amount of time used changes dynamically and is elastic.
When using fixed framing, the time allotted to each direction is fixed, hence the capacity is proportional to the allowed time.
Additionally, in fixed frame, there is a brief "ramping up" period for the Rate Adaptation algorithm. The capacities upon initial connection start low and ramp up to the actual possible number. |
||||||||||||||||||||||||||||||||
Why is the latency higher?The latency in fixed frame mode is similar to any other PTMP fixed frame system for the same framing duration. airMAX-AC flexible framing intelligently shifts the unused portion of time between the two directions. This allows much lower idle latency.
A packet entering the CPE over the Ethernet, needs to wait for the CPE to get an opportunity to transmit. In flexible framing, the time a CPE needs to wait before asking is lower when the network is idle. In fixed framing, this time is proportional to the TDD FRAMING duration. When traffic is passing, the latency between flexible and fixed is similar. In other words, fixed framing may have a higher idle latency, but this does not increase much with traffic. |
||||||||||||||||||||||||||||||||
Why don't we see a latency equal to the TDD frame duration with airFiber X products?There are two reasons:
|
||||||||||||||||||||||||||||||||
If latency is higher, what about VoIP?The airMAX-AC scheduler always prioritizes VoIP and the link latency is below standard VoIP jitter buffer limits. In our testing, we find that fixed framing provided better VoIP MOS scores on a loaded network.
|
||||||||||||||||||||||||||||||||
Is the new "flexible" duration option the same as the original AP PTMP airMAX-AC mode?Yes, flexible is the same as the original AP PTMP airMAX-AC mode and has had no changes in the v8.3 line. The same distance limitations continue to apply for flexible mode PTMP usage as before.
|
||||||||||||||||||||||||||||||||
How many CPEs can be connected to one AP?In flexible framing, the number of allowed CPEs is 85. In fixed framing, the currently allowed number of CPEs is 60, due to memory constraints on our airMAX-AC coprocessor. This limit will be increased in the future to match the flexible framing limit.
|
||||||||||||||||||||||||||||||||
What is the maximum supported distance?In fixed framing, while there is no limit to the supported distance, we have internally limited it to 75km or 46 miles. This limit is regardless of the channel width. Based on community requirements this limit can be changed.
There is a natural reduction in expected throughput based on the distance, due to propagation delay. For example, the round trip propagation delay for a 75km link is 500 microseconds, and this translates into a 10% reduction in performance for a 5ms frame and a 6.25% reduction when using an 8ms frame. |
||||||||||||||||||||||||||||||||
Why does the association process take longer?In fixed framing, we have an additional step between when a CPE first registers with the AP to when it is allowed to complete its association process with the AP. We call that “admission control”. During this step, just like a DOCSIS cable modem, the CPE needs to complete its ranging measurements with the AP and synchronize timing, before being allowed to send data.
In the current release, the WEBUI does not show the clients when in this state, but internally they are associated a lot sooner than when the WEBUI shows them. A subsequent release will show the stations associated in this state on the WEBUI. |
||||||||||||||||||||||||||||||||
What are the recommended settings?For the highest throughput, we recommend using 8ms framing. For the lowest latency, 5ms framing is recommended.
|
||||||||||||||||||||||||||||||||
How do I synchronize my APs?Simply enable the GPS Sync option from the TDD Framing section, on all the APs you wish to synchronize, like so:
The AP’s dashboard page will show the TDD framing and sync status:
Pay special attention to the following:
In subsequent releases, a time offsetting option will be added for such scenarios. |
||||||||||||||||||||||||||||||||
Can I synchronize with airFiber?Yes, when using 5ms TDD framing on both the AC and AF5/AF5x links. Please make sure the same ratios are used, and point (2) from question 15 is considered.
|
||||||||||||||||||||||||||||||||
What happens when the GPS signal is not available?If no GPS signal is available, or if the signal is lost, the APs shall continue to operate in TDD fixed frame mode. As soon as the GPS signal is recovered, they shall automatically resynchronize and continue operation.
|
||||||||||||||||||||||||||||||||
Most of the data on my network is "download heavy", why can't I have higher ratios like 85/15 or 95/5 for example?TCP-based download traffic requires TCP ACKs to be sent using the UL. In a PTMP network, there will be multiple TCP downloads going on, each requiring TCK ACKs being sent using the UL. Having enough time on the UL to allow multiple CPEs to send TCP acknowledgments, reduces the latency experienced by TCP, thereby increases the actual DL throughput.
As an example:
Hence extremely low UL allocations may end up reducing the effective throughput of the DL on larger PTMP networks. |
||||||||||||||||||||||||||||||||
Can I try TDD fixed frame on a non-GPS product?Yes. Any airMAX-AC product when set to Access Point airMAX-AC mode allows selecting 5ms and 8ms TDD framing. The only difference is the products that have the GPS component are able to synchronize their cycles.
|
||||||||||||||||||||||||||||||||
Is GPS Sync built in or is there a cost associated with it?GPS Sync is built in, there is no cost to use this technology.
|
||||||||||||||||||||||||||||||||
How does GPS Sync actually work?GPS Sync is all about time sync, allowing access points to transmit at the same time, resulting in better performance whilst using less channels.
|
||||||||||||||||||||||||||||||||
The actual capacity of the AP is the average of the DL and UL capacity in flexible mode.